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Linear and weakly nonlinear analysis of doubly diffusive vertical slot convection

Y. Young and R. Rosner
Department of Astronomy and Astrophysics, The University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637

~Received 22 September 1997; revised manuscript received 6 April 1998!

We consider vertical slot convection in the doubly diffusive case over the full range of thermal and solute
Rayleigh numbers. We quantitatively categorize the various instability regimes in the linear analyses. In the
weakly nonlinear analyses, we derive the amplitude equations using the method of normal forms and study the
stability of the finite-amplitude solutions. We discuss in some detail the physics of the various instabilities
found in our analyses.@S1063-651X~98!11905-0#

PACS number~s!: 47.20.Bp
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I. INTRODUCTION

Laterally driven diffusive convection, often referred to
‘‘slot convection,’’ has been the subject of considerable
terest over the years~@1–7# and references therein!, and is a
problem of interest in realms as distinct as convection
stellar magnetic flux tubes and heat transport within insu
ing double-paned glass windows. Results from linear an
ses provide a partial understanding of the experiments@1,8#,
such as the critical Rayleigh numbers and the width of la
formed. However, linear analysis is incapable of explain
more complex features of the phenomenology. For exam
the existence of an equilibrium state at supercriticality c
easily be explained by means of weakly nonlinear analy
@2,5#, via the existence of a stable finite-amplitude solutio
and the fact that the circulation of adjacent convection c
observed in slot convection has the same sign, as pointed
in @1#, cannot be explained in linear analysis, but can
understood easily by superposing the finite-amplitude s
tion with the unperturbed background field@5#. However,
finite amplitude analysis in the multiply diffusive case h
only been carried out in the asymptotic regime of large s
ute Rayleigh numbers@5#. The purpose of this paper is t
remedy this limitation, and to provide a more complete p
ture of multiply diffusive slot convection from both linea
and weakly nonlinear studies of the system.

We consider a vertical slot that is characterized by
imposed horizontal temperature difference and filled with
solution vertically stratified by addition of a diffusive con
taminant. At the outset of the analysis@3,6,7#, a vertical
shear flow is required to maintain the background ste
state, and the constant vertical solute gradient is rend
stabilizing. For large solute Rayleigh numbers@3,5#, thin
boundary layers develop near the sidewalls, and the fl
remains static in the interior; hence the initially unperturb
state can be well approximated by a quasistatic state, and
instability is double diffusive in nature. Hart@5# investigated
the stability of the amplitude equations within the quasista
approximation in this large solute Rayleigh number regim
and found the properties of the critical states as a functio
the solute Rayleigh number for given vertical wave numbe
For small solute Rayleigh numbers, the vertical solute gra
ent has no stabilizing effect as far as the background s
flow is concerned, and instabilities set in at the same crit
thermal Rayleigh number and vertical wave number as th
571063-651X/98/57~5!/5554~10!/$15.00
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in vertical slot convection@2,9#. For solute Rayleigh num-
bers between these two extremes, instabilities are oscilla
in nature~Hopf bifurcations!, and destabilization is induce
by the balance between the background shear flow and
buoyancy oscillations of the fluid@7#. In this regime of solute
Rayleigh numbers, the weakly nonlinear analysis of this s
tem becomes quite complicated and has not as yet been
dertaken. In this paper we remedy this omission, and perf
both linear and weakly nonlinear analyses for multiply d
fusive slot convection over a wide range of solute Rayle
numbers and diffusivity ratios. One of our goals is to provi
a complete understanding of the physics underlying multi
diffusive slot convection over the full range of physical
plausible conditions. Among the two~alternative, but re-
lated! analytical methods for the derivation of the amplitu
equations in weakly nonlinear analysis~amplitude expansion
and method of normal forms!, the method of normal forms is
more straightforward when more than two scales are
volved in the expansions; for this reason, we use the met
of normal forms to analyze the weakly nonlinear behav
near the critical points.

The structure of this paper is as follows: In Sec. II w
formulate the problem, describe the methods used in b
linear and nonlinear analyses, and present the amplit
equations derived via the method of normal forms. In Sec.
we present an exploration of the control parameter sp
~defined by the solute Rayleigh numbers!. We discuss our
results and compare them with earlier work for thermohal
convection@10# in Sec. IV, and provide our conclusions i
Sec. V.

II. FORMULATIONS AND METHODS

A. Linear stability analysis

We consider an infinitely tall two-dimensional~2D! chan-
nel of width d, as shown in Fig. 1, which we assume to
filled by an incompressible fluid~the horizontal and vertica
velocity components can be related to a stream functionc,
u5]zc; w52]xc, respectively!; and impose a temperatur
difference across the channel, of amplitudeDT. Further-
more, the fluid is initially characterized by a uniform vertic
solute concentration gradient,u]zS0u. We shall allow for
buoyancy effects, so that we work within the Boussine
approximation@11#. The Boussinesq equations we shall wo
with are nondimensionalized by scaling all velocities
5554 © 1998 The American Physical Society
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57 5555LINEAR AND WEAKLY NONLINEAR ANALYSIS O F . . .
gaDTd2/8n ~which is the magnitude of the backgroun
shear flow speed!, all lengths byd/2, temperatures byDT/2,
the solute concentration by the vertical concentration diff
enceDS/2[(d/2)u]zS0u, and time by 4n/gaDTd ~which is
the circulation time for the background shear flow for a c
of sized/2!; the resulting governing equations are then giv
by

S ] t2
16

Gr
¹2D¹2c1

16

Gr S ]xT2
Grs
Gr

]xSD5J~c,¹2c!,

~2.1!

S ] t2
16

Gr

1

Pr
¹2DT5J~c,T!, ~2.2!

S ] t2
16

Gr

1

Prs
¹2DS5J~c,S!. ~2.3!

Here J( f ,g)[]xf ]zg2]zf ]xg is the Jacobian; Gr is the
thermal Grashof numbergaDTd3/n2; Grs is the solute
Grashof numbergbDSd3/n2; Pr is the thermal Prandtl num
ber n/k t , and Prs the solute Prandtl numbern/ks ~the ther-
mal Rayleigh number and the solute Rayleigh number
then defined by the expressions Ra[gaDTd3/nk t5Gr3Pr
and Ras[gb]zS0d4/nks52Grs3Prs,0, respectively!. The
dimensional constants are the thermal expansion coeffic
a, the solute volumetric expansion coefficientb, the thermal
diffusivity k t , the solute diffusivityks , the kinematic vis-
cosity n, and the gravitational accelerationg. The boundary
conditions at the vertical walls are assumed to correspon
impenetrable, no-slip walls fixed at constant temperat
~Fig. 1!. We also assume the background state~denoted by 0!
to be steady and independent ofz:

]x
4c02]xT01

Grs
Gr

]xS050, ~2.4!

]x
2T050, ~2.5!

16

Gr

1

Prs
]x

2S02]xc050. ~2.6!

FIG. 1. Sketch of the vertical slot filled with stably stratifie
solute:b]zS05const,0.
-

l
n
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e

The unperturbed background fields, i.e., solutio
(S0 ,T0 ,c0), satisfying Eqs.~2.4!–~2.6! are found in@3,6,7#.
The linearized perturbed equations are then

] t¹
2c2]xc0]z¹

2c1]x¹
2c0]zc1

16

Gr S ]xT2
Grs
Gr

]xSD
2

16

Gr
¹4c50, ~2.7!

] tT2]xc0]zT1]xT0]zc2
16

Gr

1

Pr
¹2T50, ~2.8!

] tS2]xc0]zS1]xS0]zc2]zS0]xc2
16

Gr

1

Prs
¹2S50.

~2.9!

Without loss of generality, we choose]xT0521, b.0, and
]zS0521, and use the spectral method@12# to solve Eqs.
~2.7!–~2.9!: An elt dependence is assumed for all variab
and we expand the spatial terms in Fourier-Chebychev se
~Chebychev inx and Fourier inz!. We make use of the
following convolution relation@12#:

~ f •ĝ!k5
1

2 S (
k5p1q

f̂ p•ĝq1 (
k5up2qu

f̂ p•ĝqD ~2.10!

~where$ f̂ i% and $ĝi% are the expansion coefficients off (x)
andg(x) in the Chebychev spectral space! to write the prod-
uct of two functions as a product of a square matrix with
vector in the Chebychev spectral space:

F f ĝ0

•

•

•

•

f ĝn

G5F•F ĝ0

•

•

•

•

ĝn

G , ~2.11!

whereF is a square matrix whose elements are linear co
binations of the$ f̂ i%. †Note that Eq.~2.11! corrects the rela-
tion ~3.1.28! in Ref. @12#‡. Hence in Eqs.~2.7!–~2.9! the
functions and derivative operators in front of the variab
~c, T, andS! can be written as square matrixes in the sp
tral space, and a generalized eigenvalue equation is obta

M•V5lL•V, ~2.12!

whereM andL are matrixes obtained from Eqs.~2.7!–~2.9!.
The vectorV5(c,T,S) and the matrixM are functions of
the set of control parameters (Gr,Grs /Gr,Pr,Prs) @or, alterna-
tively, (Ra,Ras ,Pr,Prs)#. Boundary conditionsc5]xc5T
5]xS050ux561 are incorporated into Eq.~2.12! using the
tau approximation@12#. Analytically one can show that the
system is always stable to zero vertical wave number per
bations. For nonzero vertical wave numbers, we numeric
solve this equation~with the solver from theLAPACK pack-
age! in the parameter space to find neutral stability curv
Our numerical solutions exhibit good resolution when w
increase the number of modes~i.e., the spectrum show
power-law decay and remains flat at the higher mode num
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5556 57Y. YOUNG AND R. ROSNER
end of the spectrum!. In our calculation we fix the Prandt
number Pr57 ~for water at room temperature! and vary the
solute Prandtl number Prs from 73101 to 73106. For
uRasu>O(103) the convergence is satisfactory when we u
as few as 32 modes for all solute Prandtl numbers in
range$73101<Prs<73106%. For uRasu,O(103) we need
to increase the number of modes to 48 to obtain good c
vergence for solute Prandtl numbers Prs573101, 73102,
and 73103.

B. Weakly nonlinear analysis

The method of normal forms@13# is used to investigate
the behavior of finite amplitude solutions in the neighb
hood of critical points obtained from the linear theory. W
rewrite Eqs.~2.1!–~2.3! in the following general form:

~] tL2M!V5N~V,V!, ~2.13!

where V5(c,T,S) andM and L are the same as in Eq
~2.12!; N is the nonlinear term on the right-hand side of Eq
~2.1!–~2.3!, defined explicitly as follows:

N~V1 ,V2![S J~c1 ,¹2c2!

J~c1 ,T2!

J~c1 ,S2!
D . ~2.14!

The matrixM is intrinsically complex and non-Hermitian i
our system. In the case of stationary bifurcations, we
A(t) for the amplitude of theeikz mode and its complex
conjugateA* (t) for the e2 ikz mode. In the case of Hop
bifurcations, we useA(t) for the amplitude of theei (kz1vt)

mode andB(t) for the ei (kz2vt) mode. BecauseM is com-
plex and non-Hermitian,B(t) is not complex conjugate to
A(t) and we have to treat these two amplitudes separate

1. Stationary bifurcations

From @13,14#, we write

V5 (
k51

`

Vk , Vk5(
l 50

k

Vk
l Ak2 lA* l , ~2.15!

N5 (
k52

`

Nk , Nk5(
l 50

k

Nk
l Ak2 lA* l , ~2.16!

Ȧ5g~A,A* !5 (
k51

`

gk~A,A* !,

gk~A,A* !5(
l 50

l 5k

gk
l Ak2 lA* l . ~2.17!

With ] t5Ȧ]A1Ȧ* ]A* , we determineȦ5g(A,A* ) and V
simultaneously to the third order. To first order, we obtai

g1
150, ~2.18!

~g1
0L2M!V1

050, ~2.19!

~g1
0L2M!V1

150. ~2.20!
e
e

n-

-

.

e

.

Equations~2.19! and ~2.20! are the eigenvalue equations
the linear theory, i.e., Eqs.~2.7!–~2.9! plus the complex con-
jugates of these three equations. To second order, we h

g2
05g2

15g2
250, ~2.21!

~2g1
0L2M!V2

05N2
05N~V1

0,V1
0!, ~2.22!

~2g1
0L2M!V2

15N2
15N~V1

1,V1
0!1N~V1

0,V1
1!,

~2.23!

~2g1
0L2M!V2

25N2
25N~V1

1,V1
1!. ~2.24!

To the third order, we have

g3
05g3

25g3
350, ~2.25!

~3g1
0L2M!V3

05N3
05N~V2

0,V1
0!1N~V1

0,V2
0!,

~2.26!

~3g1
0L2M!V3

11g3
1LV1

05N3
1, ~2.27!

plus the complex conjugates of Eqs.~2.26! and~2.27!. At the
stationary bifurcation points,g1

050 and from the solvability
condition of Eq.~2.27! we can determineg3

1 by demanding
the projection of Eq.~2.27! along the eigenvectorV1

0 to van-
ish. We take the inner product of Eq.~2.27! with the vector
Y @which is an eigenvector of the adjoint operator of (g1

0L
2M): (g1

0L2M)ad•Y52MY50 at the critical points#
and the sum of the inner products should be zero; thus
obtaing3

1 as

g3
15

^Y,N3
1&

^Y,LV1
0&

, ~2.28!

where N3
15N(V2

0,V1
1)1N(V2

1,V1
0)1N(V1

1,V2
0)1N(V1

0,V2
1),

and the notation̂ , & refers to the inner product operation
The amplitude equation forA(t) is then the complex
Ginzburg-Landau equation,

Ȧ5g1
0A1g3

1AuAu2, ~2.29!

where we have dropped all higher-order@O(uAu5)# terms.
For stationary bifurcations,g1

0 is real in the neighborhood o
the critical points. If the real part ofg3

1@Re(g3
1)# is negative,

the bifurcation is supercritical, equilibrium solutions exi
and are stable; if Re(g3

1) is positive, the bifurcation is sub
critical, and equilibrium solutions exist forg1

0,0 and are
unstable.

2. Hopf bifurcations

As mentioned before,M is a general complex, non
Hermitian matrix and we have two independent amplitud
A(t) ~modes withei (vt1kz) dependence! and B(t) ~modes
with ei (2vt1kz) dependence! plus the complex conjugate
A* (t)@[D(t)# and B* (t)@[C(t)#. Thus, in this case we
have

V5 (
k51

`

Vk , Vk5 (
a1b1c1d5k

VabcdAaBbCcDd,

~2.30!
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N5 (
k52

`

Nk , Nk5 (
a1b1c1d5k

NabcdAaBbCcDd,

~2.31!

Ȧ5g~A,B,C,D !5( gabcdAaBbCcDd, ~2.32!

Ḃ5 f ~A,B,C,D !5( f abcdAaBbCcDd. ~2.33!

As a simple illustration of the notation:

N2001[N~V2000,V0001!1N~V1001,V1000!

1N~V0001,V2000!1N~V1000,V1001!,

whereV2000 and V1001 are obtained from the second ord
equations in the expansion.V1000 is the eigenfunction from
linear stability analysis witheivt dependence,V0100 is the
eigenfunction withe2 ivt dependence;V0001 is the complex
conjugate ofV1000, and V0010 is the complex conjugate o
V0100. Following the procedures in the previous subsecti
we obtain the amplitude equations forA(t) andB(t):

Ȧ5~e1 iv!A1a1AuAu21a2AuBu2, ~2.34!

Ḃ5~e2 iv!B1b1BuBu21b2BuAu2, ~2.35!

where e ~a small real number! is the growth rate~e50 at
criticality, e,0 at subcriticality, ande.0 at supercriticality!
and a’s and b’s are given as follows from the solvabilit
conditions @Ya and Yb , respectively, satisfy (ivL
2M)adYa50 and (2 ivL2M)adYb50, both Ya and Yb
havee2 ikz dependence#:

a15
^Ya ,N2001&

^Ya ,LV1000&
, a25

^Ya ,N1110&

^Ya ,LV1000&
, ~2.36!

b15
^Yb ,N0210&

^Yb ,LV0100&
, b25

^Yb ,N1101&

^Yb ,LV0100&
. ~2.37!

Equations ~2.34!–~2.35! are the same as the comple
coupled Ginzburg-Landau~CCGL! equations derived in@15#
for a binary fluid, and are the spatially uniform CCGL equ
tions in @16# for the nonresonant cases in the therma
coupled two layer problem. Although in this case the tw
amplitudes are strongly temporally coupled~see @17# and
@18# and references therein! the spatial symmetry in our sys
tem has reduced all the additional coupling terms to zero
the form of the CCGL is a reflection of the symmetry in t
system@15#.

C. Analysis of the coupled amplitude equations

Writing A(t)5ra(t)eiua(t) andB(t)5rb(t)eiub(t), where
ra(t), ua(t) and rb(t), ub(t) are all real functions, Eqs
~2.34! and ~2.35! give us

ṙa5era1Re~a1!ra
31Re~a2!rarb

2, ~2.38!

u̇a5v1Im~a1!ra
21Im~a2!rb

2, ~2.39!
,

-

d

ṙb5erb1Re~b1!rb
31Re~b2!rbra

2, ~2.40!

u̇b52v1Im~b1!rb
21Im~b2!ra

2, ~2.41!

where Re~a! is the real part and Im~a! is the imaginary part
of a. The square of the amplitudes of the asymptotic eq
librium state, depending on the values of the coefficients
Eqs.~2.38! and~2.40!, can be any one of the following fou
combinations:

ura0u252e
2Re~a2!1Re~b1!

Re~a1!Re~b1!2Re~a2!Re~b2!
[2gae,

~2.42!

urb0u252e
2Re~b2!1Re~a1!

Re~a1!Re~b1!2Re~a2!Re~b2!
[2gbe,

ura0u252
e

Re~a1!
,

~2.43!

urb0u250,

ura0u250,
~2.44!

urb0u252
e

Re~b1!
,

ura0u250,
~2.45!

urb0u250.

The standing wave solution in Eq.~2.42! exists only if ga
andgb are of the same sign. Ifga andgb are both negative,
the bifurcations are supercritical, and oscillatory solutio
exist fore.0. If ga andgb are both positive, the bifurcation
are subcritical, and oscillatory solutions exist fore,0. If
Re(a1) and Re(b1) are both negative~positive!, then the two
supercritical ~subcritical! traveling waves with amplitudes
given by Eqs.~2.43!–~2.44! coexist fore.0 ~e,0!. If Re(a1)
and Re(b1) are of opposite signs, subcritical traveling wav
exist and the amplitudes are given by Eq.~2.43! for
Re(a1).0 or Eq. ~2.44! for Re(b1).0. As we varye from
negative to positive values, the amplitudes of the asympt
equilibrium state change from the asymptotic amplitudes
Eq. ~2.43! for Re(a1).0 @Eq. ~2.44! for Re(b1).0# to those
in Eq. ~2.44! @Eq. ~2.43!#. The stability analysis for the equi
librium states is straightforward: we writera5ra01dra and
rb5rb01drb , wherera0 and rb0 are the equilibrium am-
plitudes, and substitute these expressions into Eqs.~2.38! and
~2.40!. To first order indra anddrb we obtain

dṙa5@e13 Re~a1!ra0
2 1Re~a2!rb0

2 #dra

12 Re~a2!ra0rb0drb , ~2.46!

dṙb5@e13 Re~b1!rb0
2 1Re~b2!ra0

2 #drb

12 Re~b2!ra0rb0dra . ~2.47!

Assumingelt dependence for bothdra anddrb , the stabil-
ity analysis for the equilibrium state then boils down to so
ing the following eigenvalue equation:
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S F e13Re ~a1!ra0
2 1Re~a2!rb0

2 2 Re~a2!ra0rb0

2 Re~b2!ra0rb0 e13 Re~b1!rb0
2 1Re~b2!ra0

2 G2lI D •Fdra

drb
G50. ~2.48!
e
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The equilibrium state is a stable fixed point~SF! if the real
parts of the two eigenvalues are both negative; if the r
parts are both positive, the equilibrium state is unsta
~UN!; the equilibrium is a saddle point~SP! if the real parts
of the two eigenvalues are of opposite signs. We note th
either one ofra0 andrb0 is zero, the matrix in Eq.~2.48! is
diagonal and the eigenvalues are real. Forra0

2 5rb0
2 50, the

two eigenvalues arel15l25e; for ra0
2 50 and rb0

2 5
2e/Re(b1), the two eigenvalues are l15e@1
2Re(a2)/Re(b1)#, l2522e; for ra0

2 52e/Re(a1) and rb0
2

50, the two eigenvalues arel1522e, l25e@1
2Re(b2)/Re(a1)#. For a more complete analysis on th
coupled amplitude equations, we refer the readers to@18#.

III. RESULTS

In this section we summarize the results of our analys
We identify two principal regimes~case I and case II!, which
differ in the nature of the unperturbed equilibrium. In cas
~the double-diffusively-driven regime!, the stratification ratio
is large @bDS/aDT5Grs /Gr>O(1)# and the unperturbed
equilibrium is a static state in the interior with thin bounda
layers sustaining the zero solute flux at the walls. In cas
~the shear-induced regime!, the stratification ratio is smal
@bDS/aDT5Grs /Gr!O(1)# and the unperturbed equilib
rium is a steady shear flow throughout the slot.

A. Double-diffusively-driven instability:
bDS/aDT5Gr s /Gr>O„1…

In Fig. 2~a! we show the critical Rayleigh numbers (Rc
[gaDTcd

3/nk t5Grc3Pr) versus the solute Rayleigh num
bers (uRasu[gbu]zS0ud4/nks5Grs3Prs) for six different
values of the diffusivity ratioH([Prs /Pr5k t /ks). In this
regime, results from our numerical calculations show t
bifurcations are stationary, and the computed neutral cu
are in satisfactory agreement with results presented in@5,7#.
We also plot the critical wave number (2kc) as a function of
uRasu, and as shown in Fig. 2~b!, our results are in good
agreement with the asymptotic approximation@1,3,5# for
uRasu>105.

In our computation, we find that the bifurcations are
subcritical forH>103 in this doubly diffusive solute Ray
leigh number regime. Exceptions to Hart’s conclusion@5# are
found forH510 andH5102, as shown in Fig. 3~a!: Hart @5#
concluded bifurcations are subcritical ifH.(2Ras)

1/6 and
supercritical ifH,(2Ras)

1/6. In contrast, we find that for
H510 there are subcritical bifurcations forH,(2Ras)

1/6,
and for H5102 there are supercritical bifurcations forH
.(2Ras)

1/6. We propose a possible explanation for the d
ferent variation ofg3

1 as a function ofuRasu for different
diffusivity ratio H in Fig. 3~b!, where we plot the critical
wave number (2kc) as a function of solute Rayleigh numb
on theuRasu-2k plane.~Note that from our definition ofuRasu
this curve on theuRasu-2k plane is the same for all diffusiv
al
le

if

s.

I

II

t
es

l

-

ity ratios H.1 in this regime ofuRasu.! Dotted lines and
dashed lines on the plane are the hypothetical dividing li
separating supercritical bifurcations~g3

1,0 above the divid-
ing line in our case! from subcritical bifurcations~g3

1.0
below the dividing line in our case! as in Fig. 3 in@5#. For
H510 the hypothetical dividing line intersects the so
curve near (uRasu,2kc);(107,20) and Re(g3

1) drops from
positive to negative values asuRasu increases. The dividing

FIG. 2. Panel~a! Neutral curve for six values of the diffusivity
ratio H(5k t /ks) in the doubly diffusive instability~case I! regime
@bDS/aDT>O(1)#. The solid dots are from our calculations; th
solid lines are the analytical results from @5#:
Ra521/661/2uRasu5/6(p)2/3/(H21). Thus, the solid lines arenot fits
to our computed results. In this regime the critical points are
stationary. We note that as far as the critical thermal Rayleigh n
bers are concerned, the asymptotic approximation works quite
even for solute Rayleigh numberuRasu as small as 103. Panel~b!
Critical wave number~52kc ; we scale distances byd/2! vs solute
Rayleigh number for the same cases displayed in panel~a!. The
analytical result from@5# deviates significantly from our compute
results asuRasu decreases below;105.
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line intersects the curve again atuRasu slightly greater than
107 and Re(g3

1) jumps discontinuously to positive value
This then explains the variation of Re(g3

1) as a function of
uRasu for H510 nearuRasu5107. For H5102, the dividing
line may intersect the solid curve atuRasu;33109 and that
is why the discontinuity occurs nearuRasu533109 for H
5102. For higher diffusivity ratios, the hypothetical dividin
line may not intersect the solid curve for 104<uRasu<1010

and thus there is no supercritical bifurcation and all bifur
tions are subcritical in this double-diffusively-driven regim

FIG. 3. Real part of the coefficientg3
1 in Eq. ~2.29! as a function

of solute Rayleigh number for various values of diffusivity ratioH
in the double diffusively driven regime. Panel~a! Re(g3

1) for H
510, 102, 103 and 104. Open circles are for positive Re(g3

1) ~sub-
critical bifurcation!, and solid circles are for negative Re(g3

1 ~super-
critical bifurcation!. The solid line isH5(2Ras)

1/6, above which
bifurcations are subcritical, and below which bifurcations are sup
critical @5#. Panel~b! Explanatory diagram for Re(g3

1) as a function
of uRasu for different diffusivity ratios. The solid line is the critica
wave number for given solute Rayleigh numbers on theuRasu-2k
plane for all diffusivity ratios in the double-diffusively-driven re
gime. The dotted line is the hypothetical dividing line forH510,
the dashed line is forH5102 and the dash-dotted line is forH
5103. In accordance with@5#, the range in theuRasu-2k plane over
which the finite amplitude instability is possible increases asH
increases.
-
.

B. Shear-induced instability: bDS/aDT5Gr s /Gr!O„1…

Here we present results of calculations for three diffusiv
ity ratios:H5k t /ks510, 102, and 103 ~Figs. 4 and 5!. In the
thermohaline slot convection case, the critical thermal Ray
leigh number and the critical wave number for solute Ray
leigh number 102<uRasu<103 in our computation@Fig. 4~a!#

r-

FIG. 4. Critical curves in the shear-induced regime; 97 mode
are used for these calculations. Panel~a! Critical thermal Rayleigh
numbers Rac as functions of solute Rayleigh numberuRasu for H
510, 102, and 103 in the transition regime; Pr57 ~for water!. On
each curve, solid dots indicate the Hopf bifurcation cases for whic
the coefficients in the amplitude equations are calculated. Panel~b!
Critical curves forH510, Pr57 in the shear-induced regime. The
left vertical axis is the critical thermal Rayleigh number Rac ; the
right y axis is the critical wave number 2kc . The solid lines repre-
sent stationary instability, while the dashed lines represent overst
bility. The diamonds placed on the solid lines indicate subcritica
bifurcations; asterisks indicate supercritical bifurcations; solid dot
~on the dashed lines! indicate points where the coefficients in the
amplitude equations are calculated~the secondary stability is listed
in Table I!. As uRasu decreases below 104, Rac reaches minimum at
uRasu5103. ~For H5102, the salty water case, the minimum is
Rac531, as in@7#.! Careful investigation nearuRasu5103 shows
that the stationary branch remains the lowest branch untiluRasu
decreases below 500, at which point the overstable branch becom
the most unstable branch. We further note that the transition from
overstability to stationary instability occurs atuRasu;200, and the
threshold solute Rayleigh number~defined in Sec. IV! uRas,thu
;50.
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are different from those in@7# for the corresponding solut
Rayleigh number 1<uRsu<10 ~the solute Rayleigh numbe
defined in @7# is Rs[gbDd3/k tn5Ras /H). We carefully
checked both convergence and resolution in our numeric
increasing the number of modes, and found that the neu
curves using 64 modes are indistinguishable from those
tained with 48 modes for all three values ofH everywhere
except nearuRasu;200, where*96 modes are required
Thus we can rule out distortion of the neutral curves due
the lack of convergence or sufficient resolution@9#. ~97
modes are used in all of our calculations in this regime.! The
discrepancies for the salty water case may be understoo
follows. In Fig. 6 we show the neutral curves for seve
density stratification ratios forH5102. In our calculations,
we calculate the critical Grashof number Grc for a fixed

FIG. 5. Panel~a!: Critical curves for salty water~H5102, Pr
57! in the shear-driven regime. The lefty axis is the critical ther-
mal Rayleigh number Rac and the righty axis is the critical wave
number 2kc . For 102<uRasu<103 the critical thermal Rayleigh
number increases less steeply than in@7# and reaches a local max
mum nearuRasu5102; asymptotically it reaches the value of 5
3104, the critical thermal Rayleigh number in vertical slot conve
tion @10#. The critical wave number decreases first as the so
Rayleigh number decreases from 103, reaches a local minimum a
uRasu;102, and climbs up to a local maximum, and then asym
totically reaches the value of 231.38, the critical wave number in
vertical slot convection@10#. The transition from overstable insta
bility to stationary instability occurs arounduRasu;200, and the
threshold solute Rayleigh numberuRas,thu;3.5. Panel~b!: The cor-
responding curves forH5103, Pr57. The transition from oversta
bility to stationary instability occurs arounduRasu;200, and the
threshold solute Rayleigh numberuRas,thu;0.08.
by
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stratification ratio Grs /Gr and then calculate the solute Ra
leigh number uRasu on the neutral curve fromuRasu
5Grs /Gr3Grc3H. The range of solute Rayleigh numbe
at critical points for these curves is 155<uRasu<480, and the
corresponding range of solute Rayleigh number in@7# is
1.5<Rs<4.8. For Grs /Gr5
431025, 3.531025, and 3.031025 two local minima are
found in the neutral curves. The critical wave numbers a
respectively, 2kc50.82, 0.76, and 0.68. The other minim
for these three curves occur at the wave number 2kc52.92,
which is the same as the critical wave number in@7# for the
corresponding solute Rayleigh numbers. Thus it is likely t
in @7# the local minima at larger vertical wave numbers w
used instead, leading to different results from ours in t
particular range of solute Rayleigh number for the therm
haline slot convection.

Table I summarizes the secondary stabilities for the so
points on the oscillatory bifurcation branches of the critic
curves in Figs. 4~b! and 5~dashed lines!. For fixed uRasu in
the range of;103, the neutral curves on the Ra-k plane are
very flat near the critical points~@7#, and references therein!
for all diffusivity ratios in our calculations, so that it is dif
ficult to determine the critical wave number precisely fro
the calculations. Hence we did not calculate the coefficie
in the amplitude equations for this range of Ras . In the next
section we discuss why the critical wave numbers are
unique foruRasu;103.

IV. SUMMARY AND DISCUSSIONS

The instabilities are categorized into two cases. Case
the double-diffusively-driven regime@bDS/aDT>O(1)#,

te

-

FIG. 6. Neutral curves for salty water~H5102, Pr57! for
a density stratification ratio in the range 231025<Grs /Gr
5bDS/aDT<431024. All instabilities are overstable~dashed
lines!. The density stratification ratio for curve 1 isbDS/aDT5
431024 and the solute Rayleigh number at critical point isuRasu
5477.14. Curve 2:bDS/aDT51024, uRasu5292.45. Curve 3:
bDS/aDT5431025, uRasu5210.48. Curve 4: bDS/aDT5
3.531025, uRasu5203.44. Curve 5:bDS/aDT5331025, uRasu
5196.53. Curve 6:bDS/aDT5231025, uRasu5155.03. For
curves 2, 3, and 4, we note that the minima at the larger w
number~2k;2.8 for all three curves! have slightly larger critical
thermal Rayleigh numbers than those at smaller wave numbers.
likely that in @7# these minima are used instead, and thus hav
constant critical wave number;3 @7# in the corresponding range o
solute Rayleigh numbers~in @7# this range is 2,uRsu,5.!
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TABLE I. Summary of the stabilities for marked points on the oscillatory branches of the critical curves in Figs. 4–6. For each
Rayleigh number, the upper brace~‘‘sub’’ in the front! describes the stabilities or existence of the four fixed points fore,0 and the lower
one ~‘‘sup’’ in the front! is for e.0. In each brace,X means the fixed point does not exist, ‘‘SF’’ stands for stable fixed point, UN is
unstable, and SP is for saddle point. For example, sub~X, UN, SP, SF! means fore,0 ~sub! the equilibrium state with amplitudes given i
Eq. ~2.42! does not exist~X!, the state described in Eq.~2.43! is an unstable node~UN!, the state with amplitudes in Eq.~2.44! is a saddle
point ~SP!, and the trivial equilibrium state in Eq.~2.45! is a stable fixed point~SF!.

H510 H5102 H5103

uRasu5330.137 sub(X,SP,X,SF) uRasu5362.817 sub~UN,SP,SP,SF!
sup(X,X,SP,UN) sup(X,X,X,UN)

uRasu5310.725 sub(X,UN,X,SF) uRasu5292.451 sub~UN,SP,SP,SF! uRasu5383.746 sub(X,UN,X,SF)
sup(X,X,SF,UN) sup(X,X,X,UN) sup(X,X,SF,UN)

uRasu5290.863 sub(X,UN,X,SP) uRasu5210.425 sub~UN,SP,SP,SF! uRasu5296.400 sub(X,UN,X,SF)
sup(X,X,SP,UN) sup(X,X,X,UN) sup(X,X,SF,UN)

uRasu5270.592 sub(X,UN,X,SF) uRasu5203.444 sub~UN,SP,SP,SF! uRasu5220.579 sub~UN,SP,X,SF)
sup(X,X,SF,UN) sup(X,X,X,UN) sup(X,X,SF,UN)

uRasu5229.212 sub(X,SP,X,SF) uRasu5196.529 sub~UN,SP,SP,SF! uRasu5210.806 sub~UN,SP,X,SF)
sup(X,X,SP,UN) sup(X,X,X,UN) sup(X,X,SF,UN)

uRasu5205.215 sub(X,UN,X,SF) uRasu5200.988 sub(X,UN,X,SF)
sup(X,X,SF,UN) sup(X,X,SF,UN)

uRasu5199.080 sub(X,UN,X,SF) uRasu5181.273 sub~UN,SPX,SF)
sup(X,X,SF,UN) sup(X,X,SP,UN)

uRasu5194.311 sub(X,UN,X,SF)
sup(X,X,SF,UN)
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where the unperturbed shear flow is significant only near
vertical boundaries. The virtually static, unperturbed equi
rium is sustained by the imposing solute stratification in b
vertical and horizontal directions. ForH.1 this equilibrium
can become unstable due to doubly diffusive instabiliti
even though it remains stable to perturbation in theH→1
limit @3,5#. Case II is the shear-induced regime@bDS/aDT
!O(1)#, where the backgrond equilibrium is a shear flo
throughout the slot. In theH51 limit the system reduces t
the vertical slot convection and the shear flow loses stab
when the thermal Rayleigh number exceeds the critical va
Rac55.53104. For diffusivity ratio H.1 the critical ther-
mal Rayleigh number Rac depends on the value ofuRasu. Rac
is independent ofH for uRasu smaller than 102, because the
solute has no effect on the instability. ForuRasu>102 the
stabilizing vertical solute gradient has significantly decrea
the amplitude of the shear flow@Fig. 7~b!#, hence Rac de-
pends onH and the instability is replaced by overstable i
stability. From Figs. 4 and 5 we find that as the solute R
leigh numberuRasu decreases below 10, both the critic
thermal Rayleigh number and the critical wave number
ymptotically approach those in the vertical slot convectio
where Rac55.53104 andkc51.38@2,9#. Though the critical
states are all stationary atuRasu;10 for the three diffusivity
ratios in Figs. 4 and 5, the bifurcation remains supercriti
for H510 and turns subcritical forH5102 andH5103. For
zero solute Rayleigh number~vertical slot convection! the
critical state is stationary and supercritical@2#. As the solute
Rayleigh number increases above zero, the critical s
changes from supercritical stationary bifurcation to subcr
cal stationary bifurcation at some solute Rayleigh num
~we define this value as the threshold solute Rayleigh n
ber Ras,th!. From Figs. 4 and 5,uRas,thu;50 for H510,
uRas,thu;3.5 for H5102 and uRas,thu;0.1 for H5103. The
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-
,
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effect of different diffusivities is well illustrated by the de
pendence of the threshold solute Rayleigh number on
diffusivity ratio. For large solute diffusivities (H→1), the
solute stratification (uRasu) must be large enough to chang
the characteristics of the instability because the solute
fuses almost as efficiently as heat, while for small sol
diffusivities (H.1), a comparatively smaller solute stratifi
cation~smalleruRasu! is enough to change the bifurcation
subcritical because the solute diffuses much less efficie
than heat@10#. Hence, the smaller the solute diffusivity, th
smaller the threshold solute Rayleigh number. The transi
from supercritical stationary to subcritical stationary bifurc
tion suggests that we should go to a higher order to inve
gate the finite-amplitude stability and the possibility f
steady state equilibrium@13,10#.

We now explain why there is no preferred length sc
for solute Rayleigh numberuRasu;103 with the help of the
vertical background density flux, defined in our ca
(]zT050! as @10,19# Fz[r0@2a(w0T02k t]zT0)1b(w0S0
2ks]zS0)#5r0@2aw0T01b(w0S02ks]zS0)#. This flux
can be written in the nondimensionalized form

Fz~x!52w0T01
Grs
Gr

w0S01
1

H

16

Ra

Grs
Gr

. ~4.1!

This density flux@Eq. ~4.1!# is a combination of convective
fluxes ~the first two terms on the right-hand side! and a dif-
fusive flux ~the last term, which is a constant since]zS0 is
fixed in our analysis!; the flux is upward if positive and
downward if negative. Figure 7~a! shows the vertical density
flux as a function ofx for solute Rayleigh numbersuRasu
.103 for salty water~H5102 and Pr57!. Figure 7~b! is for
solute Rayleigh numberuRasu,103. In Fig. 7~a!, the flux for
solute Rayleigh numberuRasu.105 is almost zero and the
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instability is mainly due to dissipation and diffusion. In th
double-diffusively-driven regime, asuRasu decreases from
105 to 104, the background flow begins to grow in the int
rior of the channel and thus the critical wave numbers de
ate significantly from those obtained within the asympto
approximations. The critical length scale increases asuRasu
decreases because dissipation due to diffusion takes p
over a larger length scale as a result of background s
flow throughout the slot. In Fig. 7~b! the density flux is nega
tive and approaches the vertical slot convection limit as
solute Rayleigh number decreases below 10, confirming
in this regime the instability is shear induced. ForuRasu
51.33103 in Fig. 7~a!, the vertical density flux is positive a
the center, transporting mass upwards. Near the bound
the flux is negative, transporting mass downwards along
walls. Thus an overturning density flux is developed, mov

FIG. 7. Vertical background density flux for salty water~H
5102, Pr57! as a function of the solute Rayleigh number. T
density flux is evaluated at the critical points. Panel~a! Fz(x) @Eq.
~4.1!# for solute Rayleigh numbersuRasu.103. Panel~b! Fz(x) for
solute Rayleigh numbersuRasu,103. For solute Rayleigh numbe
uRasu51.33103 ~dashed line!, we see that the denser fluid is tran
ported upwards near the center and downwards near the wall.
restoring force from the lateral solute gradient plays a similar r
here as the surface tension does in Rayleigh-Taylor instability. T
provides another way of understanding the nonuniqueness o
critical wave number foruRasu51.33103 in our doubly diffusive
case.
i-

ce
ar
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upwards near the center and spreading out downwards a
the boundaries, with a restoring force due to the horizon
solute gradient playing the role of surface tension. Hence
would expect the instability for solute Rayleigh numb
uRasu;103 to be similar to Rayleigh-Taylor instability with
surface tension, where the system can be unstable befor
much energy is dissipated by diffusion or viscosity, and
unstable for disturbances over a range of wave numbers@11#.
~In our case the system is unstable to perturbations of a fi
range of wave numbers for any thermal Rayleigh num
above the critical value Rac at uRasu;1.33103.! In Figure 8
we plot the growth rate~l! as a function of wave numbe
(2k) for uRasu51.33103 at a supercritical thermal Rayleig
number Ra53.1 for H510, Ra50.31 for H5102, and Ra
50.031 forH5103. ~The critical thermal Rayleigh numbe
Rac52.91 for H510, Rac50.291 for H5102, and Rac
50.0291 for H5103 for solute Rayleigh numberuRasu
51.33103.! We remark that in vertical slot convection, th
shear flow transports the fluid, and therefore the sign of
density flux is only indicative of the direction of transport
fluid, and does not imply that the fluid is top-heavy if the flu
is negative or vice versa.

We now focus on the comparison between laterally driv
double diffusive convection and thermohaline convection
a horizontal layer of fluid heated from below~henceforth, the
‘‘thermohaline Rayleigh-Be´nard convection’’ case!. With no
solute, the critical states are stationary and supercritica
both cases. When adding a less diffusive, stably strati
solute into the system, different diffusivities provide cha
nels of dissipation of energy on different time scales and t
oscillatory instability may set in before the stationary ins
bility. In the thermohaline Rayleigh-Be´nard case, the insta
bility becomes oscillatory and subcritical with solute add
@10,13#. In laterally driven diffusive convection, the instabi
ity remains stationary and supercritical for solute Rayle
numbers smaller than the threshold values defined ab
and as the solute Rayleigh number increases above
threshold value, the critical states become stationary and
critical. As the solute Rayleigh number increases above2

he
e
is
he

FIG. 8. The dependence of the growth rate~l! of a disturbance
on the wave number (2k) and on the solute diffusivityH at super-
critical thermal Rayleigh number Ra53.1 for H510, Ra50.31 for
H5102 and Ra50.031 for H5103 for a given solute Rayleigh
numberuRasu51.33103. l is measured in units of the circulatio
time ~defined in Sec. II! and lengths are scaled byd/2. 33 modes are
used in the calculations.
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~still below 103!, the background shear flow decreases s
nificantly in amplitude@Fig. 7~b!#. The instability becomes
oscillatory @dashed lines in Figs. 4~b!, 5~a!, and 5~b!#; the
balance between the shear flow and the diffusion in this
gime can be envisioned as follows. Imagine that a cell
fluid near the hot wall rises vertically from the bottom of th
slot. Since heat diffuses much more efficiently than solu
we assume that this cell is in local thermal equilibrium w
the background temperature field at all times. This cell w
move horizontally to the cold wall due to the horizontal s
ute gradient, and it will sink downwards as it crosses
midplane to the other half of the tube. Because the shear
is weak, the cell can move significantly towards the hot w
as soon as this cell is lighter than the ambient fluid at
same horizontal level. As it moves near the hot wall, it w
rise again because now it is heated near the hot wall;
oscillatory motion is established, and instability sets in
this oscillation is amplified. We further remark that foruRasu
smaller than 102 the shear flow is too strong for the oscilla
tory mode to set in before the stationary mode. ForuRasu
greater than 104, the shear flow is too weak, and the inst
bility sets in as a result of different diffusivities. The larg
the solute diffusivity, the more stable the system is and t
the higher the critical Rayleigh number, as shown in Fig.
No Hopf bifurcations are found for the secondary instabil
listed in Table I. A reasonable flow chart can be construc
for each combination of states for the fixed points in the ta
as in @18#, and we refer readers to@18# for more details.

V. CONCLUSION

We have formulated the laterally driven double diffusi
convection problem without resorting to asymptotic appro
at
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mations, and have solved it in both linear and weakly no
linear regimes. The effect of different solute diffusivities
both the shear-induced regime and the double-diffusive
driven regime is investigated by exploring a wide range
parameters in our analyses. In the shear-induced reg
@bDS/aDT!O(1)#, results show that different solute dif
fusivities change the characteristics of instability ev
though the stabilizing force is small compared to the ba
ground shear flow~small solute Rayleigh numberuRasu,10!.

In the double-diffusively-driven regime@bDS/aDT
>O(1)#, results from our linear analyses agree well w
those from the asymptotic approximations foruRasu.105.
We also propose an explanation for the discrepancies
tween results from our weakly nonlinear analyses and th
in @5# for H510 andH5102. We provide a deeper under
standing of doubly diffusive convection by comparing o
results for double-diffusive slot convection to those in t
thermohaline Rayleigh-Be´nard convection. We point out th
possible errors made in the determination of critical therm
Rayleigh numbers for solute Rayleigh numbers 2,2Rs,5
in @7#; and using the vertical background density flux, w
explain why no preferred length scale is present whenuRasu
;103 for all diffusivity ratios by resorting to an analogy wit
Rayleigh-Taylor overturning instability in the presence
surface tension, where the system is unstable for dis
bances over a limited range of wave numbers.
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